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Arecent review made note of the 50th anniversary of the identification of human cytomegalovirus (CMV) in cell culture,
an important milestone that paved the way to today’s understanding of the molecular biology, immunology, and clinical
importance of this ubiquitous viral infection.1 In the past 50 years, much progress has been made in the characterization

of disease caused by CMV. Solid organ and hematopoietic stem cell (HSC) transplant patients have significant problems with
CMV disease, including pneumonia, retinitis, and graft rejection, and there are extensive efforts to identify immune correlates
of protection in these populations.2-4 However, the major concern that pediatricians face with respect to CMV disease is the
problem of congenital CMV infection. CMV is the most common congenital viral infection in the developed world, and disease
in newborn infants is associated with mental retardation, neurodevelopmental disability, and sensorineural hearing loss (SNHL).
Preconceptual maternal immunity to CMV, though imperfect, provides protection against infection and disability in newborn
infants. This knowledge has driven great interest in the development of candidate CMV vaccines that could, in principle,
decrease the underrecognized and underappreciated disease burden associated with this disabling infection.

SCOPE OF THE POTENTIAL IMPACT OF A VACCINE AGAINST CONGENITAL
CMV INFECTION

Current estimates suggest that congenital CMV infection occurs in 0.5% to 2% of all deliveries in the United States and
Europe.5,6 Congenital CMV infections can occur in association with either primary maternal infection during pregnancy, or in
the setting of reinfection during pregnancy. Primary maternal infection is associated with the highest risk of congenital
transmission. Primary CMV infection occurs in up to 2% of CMV-seronegative women during pregnancy, and the virus may
be transmitted to the fetus in up to 40% of cases.7 The risk of primary CMV infection is increased in mothers who have young
children attending group day care, with annual acquisition rates of a primary CMV infection ranging from 8% to 20%.8-10

Preconceptual maternal immunity confers a reduced risk of congenital infection and its attendant sequelae. In a cohort study of
approximately 3500 multiparous women from a population with a high risk of congenital
CMV infection, naturally acquired immunity resulted in a 69% reduction of congenital
CMV transmission,11 an observation supporting the theoretical benefits of a proposed
maternal vaccination strategy. In addition to preconceptual immunity, other factors that
impact both the likelihood of infection and severity of sequelae include the timing of
maternal infection relative to pregnancy,12 the avidity index of maternal IgG antibodies to
CMV,13,14 and molecular genotype of the infecting CMV strain.15

The disease burden conferred by congenital CMV infection is substantial. A recent
report of the National Vaccine Advisory Committee summarized information about the
health impact of congenital CMV infections, and emphasized the impact that an effective
vaccine could have on CMV-associated disabilities.16 Among infants born to women with
primary infection during pregnancy, 25% will have one or more serious sequelae,10

including mental retardation, neurodevelopmental disability, and SNHL. CMV is the
most common infectious cause of SNHL, and is responsible for more hearing impairment
than was Haemophilus influenzae type B (Hib) meningitis in the pre-Hib vaccine era.17

Congenital CMV is responsible for up to one-third of all cases of non-syndromic SNHL
in children, and hearing loss may evolve in congenitally infection infants who have
asymptomatic infection and normal hearing at birth.18-21 Overall, it is estimated that up
to 15% of congenitally infected infants will have some degree of SNHL demonstrable
either at birth or at some point in early childhood, making prevention of this disability one
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of the most important endpoints for vaccine efficacy analy-
ses.20 In addition to reducing SNHL, an effective preconcep-
tual vaccine also could result in better outcomes for other
disabilities caused by congenital CMV.

THE CMV VIRION: ELUCIDATING THE
TARGETS OF PROTECTIVE IMMUNITY

CMV is the largest human herpesvirus, containing a
double-stranded DNA genome of !225 to 230 kbp that
encodes approximately 165 genes.22 Recently a proteomic
analysis has been performed of the CMV virion.23 This
information has not only provided important information
about the protein content of the viral particle, but also the
stoichiometry of viral-encoded proteins within the virion,
information that should prove to be of value in future vaccine
design. The structure of the CMV virion is represented in the
Figure, and key proteins of potential importance in vaccine
design are indicated.

Immunity to CMV is complex, and involves humoral
and cellular responses. The humoral immune response to CMV
is dominated by responses to viral glycoproteins, present in the
outer envelope of the virus particle (Figure). Of these, the
most fully characterized is the gB complex (gB; UL55). All
sera from CMV-seropositive individuals contain antibodies to
gB, and up to 70% of the neutralizing antibody response in
convalescent sera is gB-specific.24-27 Hence, this protein is a
highly attractive candidate for subunit vaccine development.

The gcII complex, consisting of gN (UL73) and gM
(UL100), and the gcIII complex, consisting of glycoproteins
gH (UL75), gO (UL74), and gL (UL115), are also targets of
neutralizing antibody responses,28-33 and these proteins may
merit consideration in future vaccine studies. The cellular
immune response to CMV includes MHC class II restricted
CD4" and MHC class I restricted, cytotoxic CD8" T-
lymphocyte responses to a number of viral antigens, many of
which are found in the viral tegument, the region of the viral
particle that lies between the envelope and nucleocapsid (Fig-
ure). For eliciting T-lymphocyte responses through vaccina-
tion, most attention in vaccine design has been focused on the
pp65 protein (UL83), which elicits the majority of CD8"

T-lymphocyte responses following CMV infection.34-37

Other proteins that elicit T-lymphocyte responses include the
immediate early-1 (IE1) protein (UL123) and pp150
(UL32).38-41 Recent evaluation of the T-lymphocyte re-
sponses in CMV-seropositive individuals identified addi-
tional, previously unrecognized CD4" and CD8" T-lympho-
cyte targets encoded by the CMV genome42,43 and these may
form the basis for future vaccine evaluation.

CMV VACCINES IN CLINICAL TRIALS
A number of candidate CMV vaccines have been eval-

uated in clinical trials. These vaccine candidates are summa-
rized in the Table. A wide variety of expression strategies have
been used, but generally CMV vaccines can be conceptually
subdivided into the categories of live, attenuated vaccines, and
subunit vaccines that target individual proteins.

Live, Attenuated CMV Vaccines
CMV has been the target of live, attenuated vaccine

development efforts since the 1970s. The first live CMV
vaccine candidate tested in humans was a laboratory-adapted
strain referred to as “AD169.”44 Subsequent trials with an-
other laboratory-adapted clinical isolate, referred to as the
“Towne” strain, confirmed that that this vaccine approach
could elicit neutralizing antibodies, as well as CD4" and
CD8" T-lymphocyte responses.45-52 The efficacy of this vac-
cine was tested in a series of studies in kidney transplant
recipients, and although Towne failed to prevent CMV in-
fection after transplantation, vaccination did provide a pro-
tective impact on CMV disease.53-56 A placebo-controlled
study of Towne vaccine in seronegative mothers who had
children attending out-of-home group childcare indicated
that immunization failed to protect these women from CMV
infection. In this study, pre-existing immunity conferred by
natural infection was highly protective against re-infection
with new strains of CMV introduced into the family house-
hold by toddlers attending these group daycare centers.46 This
study therefore validated the concept that a CMV vaccine
that induced immune responses comparable to natural infec-
tion could provide protection of a high-risk patient popula-
tion. One interpretation of these studies was that Towne
vaccine may have been overattenuated, compared to clinical
strains of CMV causing natural infection.

Figure. Schematic representation of the CMV virion with a depiction of
potential vaccine targets. CMV is a herpesvirus with an outer envelope
containing virally encoded glycoproteins (gC I-III) that are the major
targets of host neutralizing antibody responses. The virus also contains an
inner nucleocapsid consisting of the viral genome and associated proteins,
and a tegument layer consisting of multiple virally encoded proteins,
including the phosphoprotein pp65 (the product of the UL83 gene). The
pp65 protein is a major target of both CD4" and CD8" T-lymphocyte
responses in the setting of infection, and is a leading subunit vaccine
candidate. Original image by Andrew Townsend, Extreme Images, and
reproduced with permission (Caister Academic Press). Available in color at
www.jpeds.com.
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To explore the possibility of optimizing immunogenic-
ity of a live, attenuated CMV vaccine, MedImmune Vaccines
recently constructed a series of genetic recombinants in which
regions from the genome of the unattenuated “Toledo” strain
of CMV were substituted for the corresponding regions of the
Towne genome, toward a goal of constructing one or more
Towne/Toledo “chimeras” that contain some, but not all,
of the mutations that contribute to Towne vaccine atten-
uation.57 Four independent chimeric vaccines were pro-
duced and tested in a double-blinded, placebo-controlled
trial.58,59 All of the vaccines were found to be well-toler-
ated, and none were shed by vaccinees, as assessed by viral
culture and PCR analyses of blood and body fluids. Thus,
these vaccines appear to be sufficiently attenuated to war-
rant studies in seronegative individuals. Whether regula-
tory bodies such as the Food and Drug Administration will
be supportive of future clinical trials of these vaccines is a
matter open to speculation.

Subunit CMV Vaccines
The leading subunit CMV vaccine candidate is based

on the envelope glycoprotein, gB, due to this protein’s ability

to elicit high-titer, virus-neutralizing antibody responses dur-
ing natural infection. Other viral proteins being evaluated as
subunit vaccine candidates include pp65 and IE1, both of
which elicit T-cell responses. The current status of individual
subunit vaccine candidates is summarized in the Table and
below.

ADJUVANTED PROTEIN VACCINES. The formulation of CMV
gB currently being used in clinical vaccine trials is a recom-
binant protein expressed in Chinese hamster ovary (CHO)
cells.60,61 Purified recombinant gB vaccine is manufactured by
Sanofi-Pasteur Vaccines, and is undergoing safety, immuno-
genicity, and efficacy testing in several active clinical trials.
The first study of gB vaccine was a phase I, randomized, double-
blinded, placebo-controlled trial in adults, in which gB was
combined either with a novel adjuvant, MF59, or alum.62 Levels
of gB-specific antibodies and total virus-neutralizing activity
after the third dose of vaccine exceeded those observed in
CMV-seropositive control subjects. Antigen dose and immuni-
zation regimen were further evaluated in a phase I study of 95
CMV-seronegative adult volunteers,63 and the immunogenicity
and safety of recombinant gB has also been studied in toddlers.64

Table. Summary of pros and cons of various CMV vaccine strategies that have been tested in human
clinical trials. The table indicates the type of vaccine, the expression technology (for subunit vaccines)
employed, theoretical benefits and shortcomings, and the current status of the vaccine in ongoing trials

CMV vaccine Pros Cons Current status

Live, attenuated
vaccines

● Elicits broad-based
immunity to multiple
CMV proteins

● Safety concerns about live-virus
vaccines

● Incomplete understanding of
mechanisms of attenuation of virus

● AD169: No studies currently active
● Towne vaccine: Safety and

immunogenicity studies ongoing
● Towne/Toledo chimera vaccines: Phase

I study recently completed
Purified recombinant

glycoprotein B (gB)
● Elicits neutralizing

antibody responses
● Excludes other glycoproteins targets

of neutralizing antibody response
● Efficacy study ongoing in postpartum

women of childbearing age
● Excellent safety profile ● Excludes other important

T-lymphocyte targets
● Studies active in renal transplant

patients
● Requires MF59 adjuvant to optimize

immunogenicity (not licensed in
United States)

● Efficacy studies anticipated in
adolescents (high risk for primary CMV
infection)

Canarypox and
other vectored
expression systems

● Has been used for
both CMV gB and
pp65 (UL83)

● Not highly immunogenic ● No clinical studies of canarypox
vaccines currently active

● Vector does not
replicate in mammalian
host cells. Excellent
safety profile

● For gB/canarypox chimera, “prime-
boost” approach with Towne
vaccine required for optimal
immunogenicity

● Related ‘vectored’ approaches
undergoing evaluation in preclinical
models

● No “prime-boost” effect noted
when administered with
recombinant gB

DNA vaccines ● Ease of expression and
purification

● DNA vaccines not highly
immunogenic in humans

● Efficacy study ongoing in hematopoietic
stem cell transplant patients: bivalent
DNA vaccine with pp65 (UL83) and gB
(glycoprotein B)

● Elicits strong humoral
and cellular responses

● Theoretical safety concerns
regarding use of DNA vaccines

*Information about the current status of the vaccine is provided, including the industry sponsor/manufacturer.
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The toddler study is significant because young children may
represent an ideal population for vaccination, given the ubiqui-
tous nature of CMV transmission within group daycare cen-
ters. In all studies to date, the safety profile of the vaccine
is favorable, with injection site discomfort being the only
significant adverse event observed. There is currently a
phase II study of gB/MF59 vaccine ongoing at the Uni-
versity of Alabama, Birmingham.65 This study is being
conducted in young, CMV-seronegative women who are
vaccinated post-partum. A valuable aspect of this study is
that it will provide safety data regarding the adjuvant,
MF59, which is not yet licensed for use in the United
States.

DNA VACCINES. DNA vaccines elicit robust cellular and hu-
moral immune responses and are well suited to specificity and
precision in vaccine design. DNA vaccines have been devel-
oped for CMV66 and have focused on the gB, IE1, and pp65
proteins as the candidate target immunogens. There are cur-
rently phase 1 clinical trials underway of both a bivalent CMV
DNA vaccine candidate, using plasmid DNA encoding pp65
and gB, and a trivalent vaccine candidate that also includes
a third plasmid encoding the IE1 gene product, developed
and produced by Vical Vaccines.67,68 A study is currently
ongoing with the bivalent DNA vaccine in an HSC trans-
plant population. Both donors and recipients are being
vaccinated, with the goal of reducing CMV disease, viral
load, and use of antiviral therapy in the post-transplant
period.

VECTORED VACCINES. In a ‘vectored’ vaccine approach, the
gene product of interest is expressed in the context of a
non-replicating (usually viral) carrier. One example of such a
vaccine vector is a canarypox vector known as ALVAC,
developed by Virogenetics and Sanofi-Pasteur Vaccines. This
vector is an attenuated poxvirus that replicates abortively in
mammalian cells. ALVAC expressing CMV gB has been
studied in a “prime-boost” approach, in which ALVAC vac-
cine was administered to “prime” immune responses for sub-
sequent “boost” with either live, attenuated vaccine (Towne
strain), or recombinant gB protein vaccine.69,70 An ALVAC
vaccine expressing pp65, the major CD8" T-lymphocyte
target in naturally CMV seropositive persons, has also been
evaluated in human trials. This vaccine was administered to
CMV seronegative adult volunteers in a placebo-controlled
trial.71 The ALVAC/pp65 recipients had CMV-specific
CD8" T-lymphocyte responses at frequencies comparable to
those seen in naturally seropositive individuals. Other vec-
tored CMV vaccine expression strategies include an approach
based on the modified vaccinia virus Ankara,72 manufactured
at the City of Hope Cancer Center, and a Venezuelan equine
encephalitis (VEE) virus vectored vaccine, manufactured by
AlphaVax Vaccines. Both approaches show promise in pre-
clinical models, and the VEE-vectored vaccine approach pro-
vided protection against congenital CMV-associated disease
in an animal model of vertical transmission.73

PASSIVE IMMUNIZATION AGAINST
CONGENITAL CMV INFECTION

Clinical trials of a passive immunization approach de-
signed to target pregnancies at high risk for CMV transmis-
sion are also being conducted. In one such study, Nigro et al74

studied pregnant women with a primary CMV infection.
These women were offered intravenous CMV hyperimmune
globulin, in two different dose regimens, a “therapy” regimen
or a “prevention” regimen. In the therapy group, only 1 of 31
women gave birth to an infant with CMV disease (defined as
an infant who was symptomatic at birth and handicapped at
2 or more years of age), compared with 7 of 14 women in an
untreated control group. In the prevention group, 6 of 37
women who received hyperimmune globulin during preg-
nancy had infants with congenital CMV infection, compared
with 19 of 47 women who did not receive the high-titer
CMV globulin. Overall, the CMV hyperimmune globulin
(CMV-IGIV) therapy was associated with a significantly
lower risk of congenital CMV infection (P # .04). In a
follow-up study,75 ultrasonographic findings that were
present in a group of 92 pregnant women with primary CMV
infection were compared with those observed in 73 control
patients with evidence of preconceptual immunity to CMV.
The administration of CMV-IGIV to women in the primary
infection group was associated with significant reductions in
placental thickness, suggesting that a major component of the
CMV-IGIV effect was mediated by protection at the placen-
tal level.76 These studies are encouraging, although uncon-
trolled. Additional randomized controlled trials of CMV-
IGIV are warranted in high-risk pregnancies, to further
validate the protective effect of passive immunization.

FUTURE DIRECTIONS AND MAJOR
PRIORITIES FOR CMV VACCINE RESEARCH

One of the barriers hindering progress in the area of
vaccination against CMV is the lack of consensus on what
should be the target population for immunization. If the goal
of a vaccination program is to prevent congenital CMV
infection, immunization of young women just before entering
their child-bearing years would be a rational approach, and
would support the concept of evaluating adolescent immuni-
zation strategies. Several studies have identified adolescence
as a high-risk period for CMV transmission, with reported
annual attack rates of over 13%.77,78 Of particular concern is
the potential for acquisition of a primary infection in a preg-
nant adolescent. In a prospective study of 3253 adolescent
women, 1% acquired CMV infection during pregnancy, with
a transmission rate to the fetus of 50%.79 These studies
suggest that the adolescent may be an ideal target for imple-
mentation of a CMV vaccine program. Consistent with this
hypothesis, the Institute of Medicine analyzed the potential
economic impact of a hypothetical CMV vaccine that would
target the adolescent patient,80 and concluded that such an
approach would represent the single most cost-effective vac-
cine of any of the candidate infectious disease vaccines cur-
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rently in pre-clinical development (excluding HIV vaccines).
Whether CMV vaccination should be offered exclusively to
young women or instead should be universally incorporated
into the routine childhood vaccination schedule remains un-
clear. The problem of congenital rubella syndrome has been
largely solved in the developed world by a universal early
childhood vaccination strategy capable of inducing herd im-
munity to this virus, suggesting that this might similarly be
the preferred approach for CMV vaccination.81 Mathematical
modeling has suggested that such an early childhood immu-
nization approach would be a useful strategy for implemen-
tation of a CMV vaccine.82 In this model, universal immu-
nization of infants, particularly emphasizing those attending
group day care, would confer broad protection to the popu-
lation, and decrease the impact of congenital CMV infection
on society. As more is learned about the long-term health
consequences of CMV infection, which may include athero-
sclerosis, cancer, and immunosenescence, a case can be made
that the benefits of a CMV vaccine could extend to all
individuals, not just those who will become pregnant.83

The other barrier to progress in testing CMV vaccines
is the major need for increased knowledge about the public
health significance of congenital CMV infection and the
disabilities it produces in children. The major contribution of
the Centers for Disease Control6,84 in increasing public
awareness about the risks of CMV should help focus more
attention on the problem of congenital CMV infection. An
increased awareness of the value of maternal and newborn
screening programs is greatly needed,85-87 and the American
College of Obstetrics and Gynecology (ACOG) must be
involved in promoting education of physicians who care for
women of childbearing age about the importance of CMV in
reproductive health. Existing ACOG policies regarding edu-
cation of pregnant women on good hygienic practices should
be more aggressively employed.88 Industry also needs to in-
crease its emphasis on research and development of preclinical
and clinical vaccine studies. Several industry-sponsored stud-
ies are currently focusing on clinical evaluation of CMV
vaccines in high-risk HSC and solid organ transplant patients
at high risk for CMV disease.2-4 Although such studies ad-
vance the field, it is not clear that CMV efficacy studies in this
population are applicable to the problem of prevention of
congenital infection. Thus, negative data from cancer/oncol-
ogy vaccine studies should be interpreted cautiously, and such
studies cannot substitute for efficacy evaluation of CMV
vaccines in women of child-bearing age. Public education is of
paramount importance. With better public awareness of the
scope of the problem of congenital CMV infection, the nec-
essary economic and social forces will be in place to drive an
increased sense of urgency on the immediate need for more
aggressive clinical trial testing of CMV vaccines. Through
promoting increased awareness of the disabilities caused by
congenital CMV infection, pediatricians can take a leading
role in serving as advocates for CMV vaccine research. In-
dustry sponsors and regulatory bodies must work together to
accelerate the pace of clinical trials for this major unmet need.

I thank John R. Schreiber (University of Minnesota) for critical
review of this paper.
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